Buffalo wrote:No "design" was used - they merely replicated natural conditions from the time frame. Did you even bother to read the article?“By changing the way we mix the ingredients together, we managed to make ribonucleotides,” said Sutherland. “The chemistry works very effectively from simple precursors, and the conditions required are not distinct from what one might imagine took place on the early Earth.”
Like other would-be nucleotide synthesizers, Sutherland’s team included phosphate in their mix, but rather than adding it to sugars and nucleobases, they started with an array of even simpler molecules that were probably also in Earth’s primordial ooze.
They mixed the molecules in water, heated the solution, then allowed it to evaporate, leaving behind a residue of hybrid, half-sugar, half-nucleobase molecules. To this residue they again added water, heated it, allowed it evaporate, and then irradiated it.
At each stage of the cycle, the resulting molecules were more complex. At the final stage, Sutherland’s team added phosphate. “Remarkably, it transformed into the ribonucleotide!” said Sutherland.
According to Sutherland, these laboratory conditions resembled those of the life-originating “warm little pond” hypothesized by Charles Darwin if the pond “evaporated, got heated, and then it rained and the sun shone.”
Yup read it. And I remember when all the hoopla was going around... it's still more supportive for design than the natural model.
Even the quote above, "By changing the way we mix the ingredients together, we managed to make ribonucleotides,” said Sutherland."
Too funny. Who changed the way they mixed the ingredients together? They did. Based on what exactly? So, what they are saying is that phosphates always wait until the final stage before mixing... then RNA is born.
It's really quite amusing.
Stephen Meyer responds: http://www.nature.com/nature/journal/v4 ... 08013.html
The problem, ironically, is their own skillful intervention. To ensure a biologically-relevant outcome, they had to intervene -- repeatedly and intelligently -- in their experiment: first, by selecting only the right-handed isomers of sugar that life requires; second, by purifying their reaction products at each step to prevent interfering cross-reactions; and third, by following a very precise procedure in which they carefully selected the reagents and choreographed the order in which they were introduced into the reaction series.
Thus, not only does this study not address the problem of getting nucleotide bases to arrange themselves into functionally specified sequences, but the extent to which it does succeed in producing biologically relevant chemical constituents of RNA actually illustrates the indispensable role of intelligence in generating such chemistry.
And the bigger issue is:
Nevertheless, this work does nothing to address the much more acute problem of explaining how the nucleotide bases in DNA or RNA acquired their specific information-rich arrangements, which is the central topic of my book [Signature in the Cell: DNA and the Evidence for Intelligent Design]. In effect, the Powner study helps explain the origin of the "letters" in the genetic text, but not their specific arrangement into functional "words" or "sentences."